Unit 7: Practice Problems

No Calculator. Show all work.

- If $\frac{dy}{dt} = ky$ and k is a nonzero constant, then y could be 1.
 - (A) $2e^{kry}$
- (B) 2eki
- (C) $e^{kt} + 3$
- (D) kty + 5
- (E) $\frac{1}{2}ky^2 + \frac{1}{2}$

2.

Shown above is a slope field for which of the following differential equations?

$$(A)\frac{dy}{dx} = \frac{x}{y}$$

(B)
$$\frac{dy}{dx} = \frac{x^2}{v^2}$$

$$(0) \frac{dy}{dx} = \frac{x^3}{y}$$

(D)
$$\frac{dy}{dx} = \frac{x^2}{y}$$

(B)
$$\frac{dy}{dx} = \frac{x^2}{y^2}$$
 (C) $\frac{dy}{dx} = \frac{x^3}{y}$ (D) $\frac{dy}{dx} = \frac{x^2}{y}$ (E) $\frac{dy}{dx} = \frac{x^3}{y^2}$

 $(\frac{1}{2}, \frac{1}{2})$

$$(1,-1)$$

If $\frac{dy}{dx} = 2y^2$ and if y = -1 when x = 1, then when x = 2, y =

3.

(A)
$$-\frac{2}{3}$$

$$(B)$$
 $-\frac{1}{3}$

(D)
$$\frac{1}{3}$$

(E)
$$\frac{2}{3}$$

$$\int \frac{1}{y^2} \, dy = \int 2 \, dx$$

$$-y^{-1} = 2x + 1$$

$$-y^{-1} = 2x + 0$$

$$-\frac{1}{y} = 2x + 0$$

$$1 = 2 + 0 \Rightarrow 0 = -1$$

$$y = \frac{1}{-3}$$

4. . The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?

(A)
$$V(t) = k\sqrt{t}$$

(B)
$$V(t) = k\sqrt{V}$$

(C)
$$\frac{dV}{dt} = k\sqrt{t}$$

(D)
$$\frac{dV}{dt} = \frac{k}{\sqrt{V}}$$

$$(E) \frac{dV}{dt} = k\sqrt{V}$$

5. The slope field for a certain differentiable equation is shown below. Which of the following could be a specific solution to that differential equation?

(a)
$$y = 2 - x^2$$

$$(b) y = 3x^3 + 3$$

$$(c) y = 3e^{2x}$$

(a)
$$y = 2 - x^2$$
 (b) $y = 3x^3 + 2$ (c) $y = 3e^{2x}$ (d) $y = x^2 + x - 3$ (e) $y = lnx$

- A certain type of bacteria increases continuously at a rate proportional to the number present. If there are 500 present at a given time and 1000 present 2 hours later, how many will there be 5 hours from the initial given time?
 - (a) 2828 (b) 2143 (c) 1750 (d) 3000 (e) 16,000

$$\frac{dB}{d+} = kB$$

$$\frac{dB}{d+} = kB$$

$$B = Ce^{k+}$$

$$C = 500$$

$$B = 500e^{k+}$$

$$1000 = 500e^{2k}$$

$$2 = e^{2k}$$

$$\ln(2) = 2k$$

$$\ln(2) = 2k$$

$$(0,500)$$

$$(2,1000)$$

$$B = 500e$$

$$B = 500e^{2k}$$

$$B = 500e$$

$$B = 282e$$

A mold culture doubles its mass every three days. Find the growth model for a plate seeded with 1.2 grams of mold if the mold grows continuously at a rate that is proportional to the amount present at any given time.

$$(a)$$
 $y = 1.2e^{0.23105t}$

(b)
$$y = 1.2e^{0.10034t}$$

(c)
$$y = 1.2e^{0.54931t}$$

(d)
$$v = 1.2e^{0.23856t}$$

(e)
$$y = 1.2e^{0.69314t}$$

$$\frac{dV}{dA} = ky \qquad (0, 1.2)$$

$$V = Ce^{kt}$$

$$C = 1.2$$

$$V = 1.2e^{kt}$$

$$2.4 = 1.2e^{3k}$$

$$2 = e^{3k}$$

$$\frac{\ln(2)}{3} = k$$

X	g'(x)
-1.0	2
-0.5	4
0.0	3
0.5	1
1.0	0
1.5	-3
2.0	-6

(-1, -2)

The table above gives selected values for the derivative of a function g on the interval $-1 \le x \le 2$. If g(-1) = -2 and Euler's method with a step-size of 1.5 is used to approximate g(2), what is the resulting approximation?

\bigcirc A	-6.5
(A)	-6.5

2.5

Work out the following free response questions on the sheets provided.

Consider the differential equation $\frac{dy}{dx} = x^4(y-2)$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
 (Note: Use the axes provided in the test booklet.)
- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane. Describe all points in the xy-plane for which the slopes are negative.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0.

$$\frac{dy}{dx} = x^{4}(y-2)$$

 $y = -2e^{\frac{1}{5}x^5} + 2$

Question 2b

$$Y < 2$$
 $X \neq 0$

Question 2c

$$\frac{dy}{dx} = x^{4}(y-2)$$

$$\sqrt{-2} = -2e^{\frac{1}{5}x^{5}}$$

$$\sqrt{-2} = -2e^{\frac{1}{5}x^{5}}$$