## Lesson 6.2: Introduction to Radians and the Unit Circle

- wanic

Opening Exercise: Sketch the given angle.



But what happens when the angle gets even bigger?

What's the problem? As we create more rotations, the angle value increases QUICKLY. Let's make a NEW system.

Let's call the radius, r. Label the circle with me.



The angle were the length of arc and miles are equal is called

There are \_\_\_\_\_ radians in half a circle.

That means there are \_\_\_\_\_\_ radians for every 180°.

How many radians in 360°?

27



Lesson 1: Date: The Structure of Rational Expressions 2/28/17

engage<sup>ny</sup>

PRECALCULUS AND ADVANCED TOPICS



Proportions solve problems!

radians 
$$\left(\frac{180}{11}\right)$$

Examples:

Convert the following radian measures to degrees

$$\frac{\pi}{3} \cdot \frac{180}{\pi} = 60^{\circ}$$

$$\frac{7\pi}{6} \cdot \frac{180}{4\pi} = 210^{\circ}$$

$$4\pi \left(\frac{180}{\pi}\right) = 7200$$

Convert the following degree measures to radians.

$$135^{\circ}\left(\frac{\pi}{180}\right) = \frac{3\pi}{4}$$

Convert the given measure to the OTHER system of angle measure.

1) 
$$-290^{\circ} = -\frac{29\pi}{18}$$

$$3) 970^{\circ} = \frac{97^{\circ}}{18}$$

$$21) \frac{\pi}{18} = 10^{\circ}$$

23) 
$$\frac{35\pi}{18} = 350^{\circ}$$

$$25) - \frac{3\pi}{2} = -270^{\circ}$$

2) 
$$345^{\circ} = \frac{23\pi}{12}$$

4) 
$$-510^{\circ} = \frac{-17^{11}}{6}$$

6) 
$$150^{\circ} > \frac{5\pi}{6}$$

22) 
$$-\frac{25\pi}{12} \simeq -375^{\circ}$$

24) 
$$\frac{41\pi}{36} = 205^{\circ}$$

26) 
$$\frac{107\pi}{36} = 535^{\circ}$$

## Discussion



Positive angles in standard position rotate:

Counterclockwise

Negative angles in standard position rotate:

[lockwise

Sketch an angle of  $-\frac{2\pi}{3}$  on the circle given.

$$sin(60) = \frac{\sqrt{3}}{2}$$
 $cos(60) = \frac{1}{2}$ 
 $tan(60) = \sqrt{3}$ 
 $sin(45) = \sqrt{2}$ 

$$sin(30) = \frac{1}{2}$$
 $cos(30) = \frac{1}{3}$ 
 $tan(30) = \frac{1}{3}$ 

## The Unit Circle

tan(45) =

One of our best tools in trigonometry is called the unit circle. It is a UNIT CIRCLE because the radius of the

circle is \_\_\_\_\_\_. Label this circle with me.



PRECALCULUS AND ADVANCED TOPICS



cosine sine SO: In the unit circle, the coordinates of the points are (\_

MNEMONIC:  $(x_1y)$   $(c_1s)$ 

To has a coordinate of (53/2)

What is the cosine of  $\frac{\pi}{2}$ ?

What is the sine of  $\frac{\pi}{2}$ ?

What is the tangent of  $\frac{\pi}{4}$ ?



Lesson 1: Date:

The Structure of Rational Expressions



PRECALCULUS AND ADVANCED TOPICS

## Two Ways to Remember

Table:

Left Hand:





Use the Left Hand Trick to evaluate the following expressions.

$$\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

$$\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$$

$$\sec\left(\frac{\pi}{3}\right) = 2$$

$$sin(0) = 0$$

$$cos(0) =$$

$$\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$$

$$\sin\left(\frac{\pi}{2}\right) = 1$$

$$\cot\left(\frac{\pi}{6}\right) = 3$$

$$\csc\left(\frac{\pi}{3}\right) = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \qquad \cot\left(\frac{\pi}{4}\right) = 1$$

$$\cot\left(\frac{\pi}{4}\right) = 1$$

$$sec\left(\frac{\pi}{2}\right) = unlef$$

Find the value of x and y in each figure.















Lesson 1: Date:

The Structure of Rational Expressions 2/28/17