Pre-Calculus

Lesson Summary

W. ...

The function $f(x) = \log_b(x)$ is defined for irrational and rational numbers. Its domain is all positive real numbers. Its range is all real numbers.

The function $f(x) = \log_b(x)$ goes to negative infinity as x goes to zero. It goes to positive infinity as x goes to positive infinity.

The larger the base b, the more slowly the function $f(x) = \log_b(x)$ increases.

By the change of base formula, $\log_{\frac{1}{h}}(x) = -\log_b(x)$.

Problem Set

- 1. The function $Q(x) = \log_b(x)$ has function values in the table at right.
 - a. Use the values in the table to sketch the graph of y = Q(x).
 - b. What is the value of b in $Q(x) = \log_b(x)$? Explain how you know.
 - c. Identify the key features in the graph of y = Q(x).

b. The graph is reflected	over x-axis	50 log = (x)
when x= 4 y=-1	So he	69 4 (x)

x	Q(x)	
0.1	1.66	
0.3	0.87	
0.5	0.50	
1.00	0.00	
2.00	-0.50	
4.00	-1.00	
6.00	-1.29	
10.00	-1.66	
12.00	-1.79	

t(x)

Pre-Calculus

Consider the logarithmic functions $f(x) = \log_b(x)$, $g(x) = \log_5(x)$, where b is a positive real number, and $b \neq 1$. The graph of f is given at right.

a. Is b > 5, or is b < 5? Explain how you know.

b>5 6/c the y-value of 1 occurs when x=7 So bis 7.

Compare the end behavior of f and g. The end behaviors will be the same As x-70, y-7-00

A5 x 700, y 300

On the same set of axes, sketch the functions $f(x) = \log_2(x)$ and $g(x) = \log_2(x^3)$.

Describe a transformation that takes the graph of f to the graph of g.

a. All of g(x)'s points are stretched vertically by a factor of 3. b. g(x)= log2(x3) = 3/og2(x)=3+(x) scaled by a factor of 3.

Lesson 9: Date:

Graphing the Logarithm Function 10/23/17